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A B S T R A C T

Background: Extracellular free water within cerebral white matter tissue has been shown to increase with age and
pathology, yet the cognitive consequences of free water in typical aging prior to the development of neurode-
generative disease remains unclear. Understanding the contribution of free water to cognitive function in older
adults may provide important insight into the neural mechanisms of the cognitive aging process.
Methods: A diffusion-weighted MRI measure of extracellular free water as well as a commonly used diffusion MRI
metric (fractional anisotropy) along nine bilateral white matter pathways were examined for their relationship
with cognitive function assessed by the NIH Toolbox Cognitive Battery in 47 older adults (mean age ¼ 74.4 years,
SD ¼ 5.4 years, range ¼ 65–85 years). Probabilistic tractography at the 99th percentile level of probability (Tracts
Constrained by Underlying Anatomy; TRACULA) was utilized to produce the pathways on which microstructural
characteristics were overlaid and examined for their contribution to cognitive function independent of age, ed-
ucation, and gender.
Results: When examining the 99th percentile probability core white matter pathway derived from TRACULA,
poorer fluid cognitive ability was related to higher mean free water values across the angular and cingulum
bundles of the cingulate gyrus, as well as the corticospinal tract and the superior longitudinal fasciculus. There
was no relationship between cognition and mean FA or free water-adjusted FA across the 99th percentile core
white matter pathway. Crystallized cognitive ability was not associated with any of the diffusion measures. When
examining cognitive domains comprising the NIH Toolbox Fluid Cognition index relationships with these white
matter pathways, mean free water demonstrated strong hemispheric and functional specificity for cognitive
performance, whereas mean FA was not related to age or cognition across the 99th percentile pathway.
Conclusions: Extracellular free water within white matter appears to increase with normal aging, and higher values
are associated with significantly lower fluid but not crystallized cognitive functions. When using TRACULA to
estimate the core of a white matter pathway, a higher degree of free water appears to be highly specific to the
pathways associated with memory, working memory, and speeded decision-making performance, whereas no
such relationship existed with FA. These data suggest that free water may play an important role in the cognitive
aging process, and may serve as a stronger and more specific indicator of early cognitive decline than traditional
diffusion MRI measures, such as FA.
1. Background

1.1. Brain and cognitive aging

Across the world, the elderly population is rapidly expanding
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(Bureau, 2009). In the United States, the 65 and older population is ex-
pected to double by the year 2050 (Bureau, 2009; Jacobsen et al., 2011).
With increasing age, a variety of cognitive processes decline even in the
absence of apparent neurological or neurodegenerative disease (Anton
et al., 2015; Dotson et al., 2015; Woods et al., 2013, 2011). While
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Table 1
Sample demographics.

Variable Total Mean
(SD)

Male Mean
(SD)

Female Mean
(SD)

N ¼ 47 N ¼ 20 N ¼ 27

Age 74.4 (5.4) 73.8 (4.8) 74.9 (5.8)
Highest Educational Level 16.6 (2.4) 16.6 (2.7) 16.7 (2.1)
Right-Handed 95.7% 95.0% 96.3%
Race
Caucasian 95.8% 100.0% 92.6%
African-American 2.1% 0.0% 3.7%
Latino 2.1% 0.0% 3.7%
MoCA Total Score 25.8 (2.5)* 24.6 (1.9) 26.7 (2.5)
NIH Toolbox Crystallized
Performance

115.8 (18.5) 111.1 (20.3) 119.2 (16.6)

NIH Toolbox Fluid
Performance

100.0 (12.5) 97.7 (12.2) 101.6 (12.7)

* Female performance significantly higher than male p < .01. Note: Adjusted
Scaled Scores have a mean of 100 and standard deviation of 15; MoCA¼Montreal
Cognitive Assessment; NIH Toolbox Crystallized Performance is comprised of the
Picture Vocabulary Test and the Oral Reading Recognition Test; NIH Toolbox
Fluid Performance is comprised of Dimensional Change Card Sort, Flanker, Pic-
ture Sequence Memory, List Sorting, and Pattern Comparison tasks.
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language function is relatively well-preserved (e.g., vocabulary), learning
and memory, working memory, speed of processing, executive function,
and attention, as well as other abilities, steadily decline across the life
span (Craik, F. I. M.& Salthouse, 2008; Salthouse, 1998). These cognitive
functions that decline with age are collectively referred to as fluid
cognition, while crystallized cognition is typically defined as abilities
that either do not change or improve with age. The rates of fluid cogni-
tive decline tend to be most pronounced in the seventh decade of life and
beyond, and decline in fluid function in healthy elderly has been shown
to have social and physical functional consequences (O’Shea et al.,
2018). Cognitive decline late in life is associated with increased hospi-
talization, hospital re-admittance rates, mortality, loss of mobility, and,
ultimately, loss of independence (Anton et al., 2015; Aubertin-Leheudre
et al., 2015; L€ovd�en et al., 2005; Marioni et al., 2014; Woods et al., 2013,
2011). As the world’s elderly population increases, we are faced with a
health system crisis, both in capacity limitations and financial burden
(Brault, 2012; Bureau, 2009; Jacobsen et al., 2011). These difficulties
highlight the need for markers sensitive to the cognitive aging process
that will better inform our understanding of mechanisms underlying
age-related decline, and may serve as potential targets for intervention.

1.2. Free water, cognitive aging, and disease

With brain atrophy comes microstructural changes within the white
matter which are 1) related to lower cognitive performance, 2) most
apparent within the prefrontal white matter connections early in the
aging process, 3) apparent both in the whole brain and tract-specific, and
4) extend toward the posterior regions later in individuals of advanced
age (Bennett, Ilana and Madden, David, 2014; Gunning-Dixon et al.,
2009; Madden et al., 2012). The most common measure used to char-
acterize white matter microstructure, fractional anisotropy (FA), typi-
cally demonstrates sensitivity as a marker of normal aging that declines
prior to grey matter atrophy (Hugenschmidt et al., 2008). However,
traditional measures of white matter microstructure such as FA may have
inherent limitations. For example, increased extracellular space has been
observed as a function of brain atrophy, and the presence of these spaces
can limit the accuracy of diffusion magnetic resonance imaging (dMRI)
due to partial volume effects (Fjell et al., 2008). In other words, the ac-
curacy of FA as a metric can be altered from partial volume effects
depending upon the curvature, thickness, and orientation of the pathway
in a given voxel (Vos et al., 2011). Further, partial volume effects may be
more evident in the outermost portions of white matter pathways having
an increased likelihood of including higher proportions of CSF, or even
grey matter, within a given voxel. To partially address this potential
confound, free water imaging from diffusion-weighted MRI has been
proposed as a method to estimate and eliminate the effect of extracellular
free-water on the dMRI signal (Pasternak et al., 2009).

Free water is defined as water molecules that are free to diffuse and
do not experience restriction or hindrance. In conventional dMRI ac-
quisitions, within a given brain voxel free water can be found in the
extracellular space, which includes cerebrospinal fluid (CSF), interstitial
space, or plasma. Diffusion imaging of free water was originally
described as a method for reducing the partial volume effects of freely
diffusing extracellular water within white matter to produce a more ac-
curate estimate of the white matter microstructure (Pasternak et al.,
2009). Increases in free water levels are thought to reflect accumulation
of extracellular water, which may occur due to processes such as atrophy,
edema, or breakdown of myelin cell membranes that would typically
restrict diffusion of water (Maier-Hein et al., 2015; Ofori et al., 2015;
Pasternak et al., 2016, 2015; 2014, 2012; 2009; Weston et al., 2015).
Subsequent research on the topic has found that free water levels have a
stronger association with age than traditional diffusion tensor imaging
(DTI) measures (Chad, J.A., Pasternak, O., Salat, D.H., Chen, 2018).
Recent longitudinal studies of elderly subjects found that free
water-adjusted measures of white matter microstructure are more reli-
able, and better predict markers of aging and disease-specific pathology
2

than white matter investigations performedwithout correction for partial
volume effects (Albi et al., 2017; Chad, J.A., Pasternak, O., Salat, D.H.,
Chen, 2018; Maier-Hein et al., 2015). In subjects with neurodegenerative
disease, progressive increases in free water levels are observed at each
stage throughout the disease progression from healthy, to mild cognitive
impairment (MCI), to Alzheimer’s disease (AD) (Montal et al., 2018).

At present, the functional consequences of free water in typical aging
without neurodegeneration remain unknown. The association of free
water and cognition in a sample of cognitively diverse individuals was
recently examined as a function of free water across the entire brain in
relation to cognition (Maillard et al., 2019). The authors found global
associations of whole-brain free water to be positively related to the
Clinical Dementia Rating scale as well as broad measures of cognitive
functioning and their change over time. However, more detailed and
specific associations between free water along white matter pathways
and cognitive function have yet to be examined in typical aging. Thus,
the current study sought to elucidate the relationship between free water,
age, and cognitive performance in older adults without neurodegenera-
tive disease in order to better understand the unique role of free water in
cognitive aging. Utilizing a sample of 47 typically-aging older adults, we
studied the relationship between free-water across nine white matter
pathways and neurocognitive function. as measured by the comprehen-
sive NIH Toolbox (NIHTB) Cognitive Battery (Akshoomoff et al., 2013;
Bauer and Zelazo, 2013; Weintraub et al., 2013). We hypothesized that,
1) Free water values across a majority of the investigated white matter
tracts would be greater with increasing age, 2) higher free-water values
would be associated with poorer cognitive performance in fluid but not
crystallized cognitive performance, and 3) free water would be the
strongest correlate of cognitive aging, followed by a free water-adjusted
traditional diffusion metric (e.g. Free Water-corrected Fractional
Anisotropy), and the traditional diffusion metric alone (Fractional
Anisotropy).

2. Methods

2.1. Participants

Forty-seven older adults (57.4% female) were recruited from the
north-central Florida community. The study protocol was reviewed and
approved by the University of Florida Institutional Review Board and all
participants willingly provided written informed consent to participate in
the study. Participants had a mean age of 74.4 years (SD ¼ 5.4 years,
range¼ 65–85 years) and an average of 16.6 years of education (SD¼ 2.4
www.manaraa.com
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years, range ¼ 12–20 years) (Table 1). Participants were screened for
dementia using the Montreal Cognitive Assessment (MoCA; M ¼ 25.8,
SD ¼ 2.5, range ¼ 20–30) (Nasreddine et al., 2005), assessment of
normative neuropsychological values on the NIH Toolbox (greater than 1
SD deficit in a cognitive domain on demographically corrected scores),
and self-reported medical history. None of the participants carried pre-
vious diagnoses of mild cognitive impairment or Alzheimer’s disease.
Participants were excluded for pre-existing neurological or major psy-
chiatric brain disorders, MRI contraindications, diagnosis with a neuro-
degenerative brain disease (i.e. Alzheimer’s, Parkinson’s), and
self-reported difficulty with thinking and/or memory.

2.2. Neurocognitive measures

The NIH Toolbox Cognitive Battery was administered as a brief
assessment of neurocognitive function (Akshoomoff et al., 2013; Bauer
and Zelazo, 2013; Weintraub et al., 2013). Subtests of the NIHTB
Cognitive Battery are divided into two composite measures of global
cognitive function: 1) fluid cognitive abilities (abilities that change with
age) and crystallized cognitive abilities (abilities that do not typically
change with age). The fluid cognition composite is composed of the
following tasks: Dimensional Change Card Sort, Flanker, Picture
Sequence Memory, List Sorting, and Pattern Comparison. The crystal-
lized cognition composite is composed of the Picture Vocabulary Test and
the Oral Reading Recognition Test. More information about these mea-
sures and the creation of the two index scores can be found in the original
work of Weintraub et al. (Weintraub et al., 2013). For the purposes of this
study, the unadjusted crystallized and fluid composite scaled scores were
utilized for analyses with age, education, and gender as covariates. For
planned follow-up analyses, raw performance on the various subtests
comprising these index measures were used with age, education, and
gender as regression covariates. Use of these adjusted or raw scores in
analyses, respectively, when combined with diffusion metrics allows for
equitable comparisons. Briefly in regard to cognitive performance, we
observed the typical age-related decline in fluid cognitive performance
with advancing age, and a flat-to-slightly increasing relationship between
age and crystallized cognitive performance.

2.3. Neuroimaging acquisition

All participants were imaged in a Philips 3T scanner (Achieva; Philips
Healthcare), at the McKnight Brain Institute (University of Florida,
Gainesville, Florida) with a 32-channel receive-only head coil. A high-
resolution T1 weighted MPRAGE sequence and a 64-direction high
angular resolution diffusion-weighted imaging sequence were per-
formed. Scanning parameters for the structural T1 consisted of: voxel
size ¼ 1 mm isotropic; TE ¼ 3.2 ms; TR ¼ 7.0 ms; FOV ¼ 240x240;
Number of slices ¼ 170; acquired in a sagittal orientation. We also ob-
tained diffusion imaging data with a spin-echo prepared echo planar
image (Poustchi-Amin et al., 2001) using the following parameters:
TR/TE ¼ 4840/86 ms, 1 b ¼ 0 scan (without diffusion weighting), 64
gradient directions with diffusion weighting 1000 s/mm2, isotropic
resolution of 2.0 mm, field of view (FOV) of 224 mm � 224 mm, and 74
slices, covering the entire brain, with diffusion gradients distributed
following a scheme of electrostatic repulsion (Jones et al., 1999).

2.4. Neuroimaging processing

2.4.1. T1-weighted imaging
T1-weighted images were processed through the FreeSurfer version

6.0.0 software. More information on the Bayesian inference methods and
reliability of results utilizing Freesurfer software can be found in the
original work by Fischl et al. and follow-up work by Jovicich et al.,
respectively (Fischl et al., 2002; Jovicich et al., 2009). The white matter
segmentation results were manually inspected, slice-by-slice, and control
points were created to ensure accurate estimation of white matter
3

borders throughout the brain. Maps were then re-processed with these
control points, producing results that should better resemble previous
maps that have been validated against histological measures (Cardinale
et al., 2014) and manual segmentation in specific brain regions (Morey
et al., 2009). The resulting segmentation data were then utilized for
further analysis in conjunction with the dMRI data described below.

2.4.2. Diffusion modeling and parameter calculation
A two compartment model was used (Pasternak et al., 2009) to

separately model water molecules in the vicinity of brain tissue (the
tissue compartment) and water molecules that are freely diffusing
without being hindered or restricted by tissue membranes (the free water
compartment). This model was fitted using a regularized minimization
procedure implemented in Matlab (Pasternak et al., 2009), resulting in a
free water map, which is a quantitative metric of the free water fraction
in each voxel. Further, a fractional anisotropy (FA)(Basser and Pierpaoli,
1996) map was calculated from the tissue compartment to produce a free
water adjusted FA. In order to produce the FA map, the diffusion data
were corrected for eddy current distortions, brain extracted, and tensor
calculations were performed using the Functional MRI of the Brain
Software Library (FSL) dtifit tool (Fsl, 2006). FA was chosen as a
comparative metric to the free water metric as it is a commonly-used
diffusion parameter that represents the overall integrity of the white
matter. To do so, FA incorporates several physical parameters of water
diffusion in each voxel as derived by the three principle eigenvalues and
as seen in the FA equation (€Ozarslan et al., 2005):

FA¼
ffiffiffiffiffiffiffiffi
1=2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1 � λ2Þ2 þ ðλ2 � λ3Þ2 þ ðλ3 � λ1Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ21 þ λ22 þ λ23

q

2.4.3. Diffusion tensor imaging
TRACULA (TRActs Constrained by UnderLying Anatomy) is a neu-

roimaging tool which was chosen because it allows automatic recon-
struction of common major white-matter pathways derived from
diffusion-weighted MRI (Yendiki, 2011). The primary analysis utilized
dMRI data that were processed through the default TRACULA pipeline,
which utilizes the trac-all command as well as correction for eddy current
distortions, brain extraction, tensor calculation, and affine registration
and normalization to the MNI-152 template using FSL’s flirt (Fsl, 2006;
Jenkinson et al., 2002; Jenkinson and Smith, 2001). This process results
in the reconstruction of 18 commonly studied white matter pathways
using the probability distributions of voxel-based fiber orientations along
each tract. The resulting pathways included forceps major (fmajor) and
minor (fminor) of the corpus callosum, and bilateral pathways for the
anterior thalamic radiation (ATR), cingulate gyrus cingulum bundle
(CCG), cingulate gyrus angular bundle (CAB), corticospinal tract (CST),
inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus
temporal bundle (SLFt), superior longitudinal fasciculus parietal bundle
(SLFp), and uncinate fasciculus (UNC). Pathways for each participant
were manually inspected for gross reconstruction errors or missing
pathways and corrected (necessitated for one pathway across two par-
ticipants [CAB and UNC]) as needed such that no missing data were
present The Average Center pathway data represent the pathway in which
each adjacent voxel in the path has a 99% probability of being the next
true fiber in the pathway, based on diffusion characteristics. This mea-
sure, as opposed to the standard output tract, provides the highest level of
anatomical feasibility for the resulting pathways, and the primary tract
measure utilized in this study.

2.4.4. Free water and fractional anisotropy extraction from regions of
interest

Using the free water, FA, and free water-adjusted FA maps as the base
image and the Average Center pathway as the mask (99% probability
connection), mean diffusion (FA, free water) values across each of the
www.manaraa.com
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nine Average Center pathway masks were calculated for each participant
using the fslmaths tool (Jenkinson et al., 2012). Using the Average Center
data serves to increase confidence that the pathways examined are
indeed representative of true white matter neuroanatomy and minimize
overlap with cerebrospinal fluid (CSF), which would be identified as
partial volume in the extracted free water values (Pasternak et al., 2009).
The default TRACULA tract output and the 99th percentile probability
pathway are presented together along the corticospinal tract of a repre-
sentative participant for visualization (Fig. 1). In order to further reduce
the possibility of false discovery, the diffusion values for each hemi-
sphere of the sixteen Average Center pathways were averaged together to
create eight bilateral pathway values. Later analyses determined data
across the SLFt and SLFp pathways to be highly co-linear and statistically
indistinguishable, and as such, the values for these two physically
co-located pathways were collapsed into a single bilateral variable (SLF).
Thus, when combined with the two collosal pathways (fmajor and fmi-
nor), the present study utilized a total of nine final pathways per diffusion
modality, as in previous research by our group (Gullett et al., 2018).
2.5. Statistical analyses

Statistical analyses were performed with SPSS Statistics v24.0 (IBM,
2016). Tables and statistical figures were created using SPSS as well as R
3.3.3 statistics package (R Development Core Team, 2016), and ggplot
2.2.1 (Wickham, 2017). All demographic and neurocognitive variables of
interest met the requirements of normality specified by the GLMmodel in
terms of skewness and kurtosis, as z-skew or z-kurt values did not exceed
normal limits to necessitate normalization. There were no missing de-
mographic or neurocognitive data across the included participants.
Outlier diffusion values (greater than � 3SD from the mean) extracted
from the probabilistic tractography pathways were normalized with
Winsorization, which is a common practice (Jones et al., 2017; Tem-
pleton, 2011). Winsorization was only necessitated for one pathway
(CCG) belonging to one participant.

The primary analysis examining the relationship of cognition and
diffusion values averaged across the entire Average Center path for each
bilateral tract was performed. The formula for this regression equation is
as follows:

CogMeasure ¼ Bintercept þ Bageageþ Bedueduþ Bmale sexsexþ Bfemale sex sex

þ Bdiffusiondiffusion

In this analysis, a series of linear regressions were performed to
determine the relationship of three diffusion metrics to the two unad-
justed NIH Toolbox composite cognitive indices (Fluid cognition and
Crystallized cognition), with covariates of age, education, and gender.
The dependent variable (DV) was the cognitive index and the indepen-
dent variables (IVs) included the three covariates (age, education,
gender) along with the average diffusion value across the tract of interest.
Fig. 1. A representative bilateral corticospinal tract pathway depicting the differentia
compared to the standard TRACULA pathway output (red).

4

Lastly, secondary analyses were performed for those bilateral pathways
that were significantly related to cognitive functioning to determine the
specific contribution of each NIH Toolbox cognitive subtest. Left and
right hemisphere data were also examined for their individual contri-
butions to each cognitive subtest with additional regressions. These an-
alyses allowed for determination of specificity of the relationships in
regard to the neuropsychological functions associated with each
anatomical pathway. Each linear regression investigating the relation-
ship between cognitive performance and the mean diffusion value of
each pathway was corrected for False Discovery Rate (FDR) at a p-value
threshold of p < .05 using the Benjamini and Hochberg method
considering a total of nine pathways examined, which consistent with
and perhaps even more conservative than similar recent investigations
(Boots et al., 2019; Chopra et al., 2018; Luo et al., 2019). Investigations
involving the hemispheric contributions of each specific subtest were
corrected similarly for a total of nine regressions given that both hemi-
spheres were entered as IVs into the model for each pathway. For display
purposes as an attempt to deal with potential multi-collinearity of vari-
ables, we provide values from a partial correlation (ρ) independently
correcting both the diffusion and cognitive variables for age, education,
and gender. These values provide visualization of the unique relationship
between a single diffusion metric and cognitive performance after
removing the effect of latent variables (e.g. age, education, and gender).
Lastly, QQ plots were visualized for the standardized and unstandardized
residuals of all regressions performed, which revealed no evidence of
abnormality or deviation from the regression line which would require
further investigation with a Kolmogorov-Smirnov test.

3. Results

3.1. Sample demographics

One-way ANOVA determined MoCA performance was significantly
higher for female participants (M ¼ 26.7, SD ¼ 2.54) than males (M ¼
24.6, SD ¼ 1.90; F[1,46] ¼ 9.78, p ¼ .003). Otherwise, there were no
significant differences between male and female participants on any of
the demographic, cognitive, or neuroimaging-based measures utilized in
this study. The majority of the sample was right-handed, and given that
the language-related measures administered were isolated to the crys-
tallized composite and were 1) not speed-dependent tasks, and 2)
investigated in relation to bilateral hemisphere neuroimaging data,
participant handedness is of minimal concern regarding potential influ-
ence on the findings.
3.2. Age and white matter diffusion across TRACULA-derived pathways

In general, diffusion data demonstrate the commonly described
pattern of decreasing white matter integrity (higher free water) with
increasing age. When utilizing the 99th percentile pathway data derived
www.manaraa.com

l size and location of the 99th percentile probability pathway (bright yellow) as



J.M. Gullett et al. NeuroImage 219 (2020) 117040
from TRACULA, covarying for education, gender, and applying an FDR
correction (p< .05), there was a significant positive relationship between
age and mean free water across one of the nine pathways examined; the
ATR (R2 ¼ 0.20, p ¼ .027). Three additional pathways demonstrated
trends toward significance after FDR correction, including the CAB (R2 ¼
0.12, p ¼ .081), ILF (R2 ¼ 0.14, p ¼ .081), and the SLF (R2 ¼ 0.12, p ¼
.081). There was no significant association between age and mean FA or
mean free water-adjusted FA across any of the nine pathways examined
after FDR correction (Table 2).

3.3. Free water values and cognitive performance

When including in the regression model variables of age, education,
and gender, fluid and crystallized cognition were examined for their
relationship with average free water values across each of the nine
bilateral 99th percentile probability pathways produced by TRACULA.
After applying FDR correction, lower fluid cognitive performance on the
NIH toolbox was significantly related to higher mean free water values
across four of the nine bilateral pathways, including the CAB (R2 ¼ 0.35,
β ¼ �0.42, FDR-p ¼ .027), CCG (R2 ¼ 0.29, β ¼ �0.33, FDR-p ¼ .045),
CST (R2 ¼ 0.28, β ¼ �0.33, FDR-p ¼ .045), and SLF (R2 ¼ 0.30, β ¼
�0.35, FDR-p ¼ .045) (Table 3). There was no association between
crystallized cognition and free water diffusion after FDR correction,
though trends were observed for the CAB (R2 ¼ 0.35, β ¼ �0.35, p ¼
0.035, FDR-p¼ 0.19) and ILF (R2 ¼ 0.37, β¼�0.31, p¼ 0.058, FDR-p¼
0.19) pathways. For visualization of these results, values from a partial
correlation (ρ) independently correcting both the diffusion and cognitive
variables for age, education, and gender are displayed in Fig. 2.

3.4. Fractional anisotropy and cognitive performance

When covarying for age, education, and gender, neither fluid cogni-
tion nor crystallized cognition were associated with mean FA or with
mean free water-adjusted FA across any of the nine bilateral white matter
pathways. A trending association for lower fluid cognitive performance
with lower mean FA across the Forceps Major of the corpus callosum was
observed (R2 ¼ 0.28, β ¼ 0.30, p ¼ 0.03, p-FDR ¼ 0.20). Otherwise,
neither FA nor free water-adjusted FA were related to cognitive perfor-
mance across the remaining pathways, though directional trends were
consistently positive such that higher FA or FW-adjusted FA were asso-
ciated with better fluid cognitive performance (Supplemental Table 3).

Planned follow-up analyses to determine the specific Fluid Cognition
subtest or subtests driving these relationships were then performed,
using subtest performance as the DV, mean free water across each of the
four significant pathways as the IV, and covariates of age, education, and
gender. These analyses revealed that higher mean free water values
across the CAB was significantly associated with decreasing performance
on the List Sorting memory task (β ¼�0.44, FDR-p¼ .015), higher mean
free water across the CCG was associated with lower Picture Sequencing
Table 2
Association of age with diffusion metrics using TraCULA (N ¼ 47).

R2 βage p-val R2 β

Free
Water

ATR 0.20 0.441 0.003* Fractional
Anisotropy

ATR 0.06 �
CAB 0.12 0.316 0.038 CAB 0.03 �
CCG 0.03 0.022 0.883 CCG 0.02 �
CST 0.08 0.204 0.176 CST 0.09 �
Fmajor 0.10 0.011 0.942 Fmajor 0.05 �
Fminor 0.05 0.215 0.169 Fminor 0.03 �
ILF 0.14 0.302 0.038 ILF 0.04 �
SLF 0.12 0.347 0.021 SLF 0.08 0
UNC 0.13 0.002 0.302 UNC 0.05 �

*survives FDR-correction at p < .05; **survives FDR-correction at p < .01.
Note: Covariates included in regression model¼ years of education, gender; β¼ Stand
Angular Bundle; CCG ¼ Cingulate Gyrus Cingulum Bundle; CST ¼ Corticospinal Tra
Callosum; ILF ¼ Inferior Longitudinal Fasciculus; SLF ¼ Superior Longitudinal Fascic
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memory performance (β¼�0.41, FDR-p¼ .030), higher mean free water
across the CST was associated with lower Flanker performance (β ¼
�0.49, FDR-p ¼ .005), and higher mean free water across the SLF was
associated with lower List Sorting memory (β ¼ �0.38, FDR-p ¼ .033)
(Table 3; Fig. 3).

4. Discussion

The present investigation extends age-related associations in extra-
cellular free water to cognitive function and white matter tracts obtained
using an innovative probabilistic tractography approach. When exam-
ining white matter microstructure across the core pathway of nine major
white matter tracts, which serves to minimize partial volume with CSF
and grey matter, we demonstrate that higher free water values within the
core white matter pathway are related to poorer fluid cognitive function.
Further, there appears to exist a strong hemisphere-specific, structure-
function relationship between free water within specific pathways and
their associated neurocognitive function.

When examining the 99th percentile (Average Center) core white
matter pathway produced by TRACULA, mean free water across four
tracts was a significant predictor of fluid cognitive ability, while a
traditional measure of diffusion (FA) was not. The association between
higher mean free water across these four pathways and the neuropsy-
chological subtest contributing to the effect was specific to the functions
required of the related cognitive task. Significant associations between
poorer fluid cognitive functioning and higher mean free water values
were observed across the core pathway of the angular bundle of the
cingulate gyrus (CAB), the cingulum bundle of the cingulate gyrus (CCG),
the corticospinal tract (CST), and the superior longitudinal fasciculus
(SLF). Interestingly, the cognitive subtasks associated with higher mean
free water across the CAB and CCG were those related to memory and
working memory functions (Picture Sequencing and List Sorting,
respectively), as might be expected for these frontotemporal pathways
with hippocampal involvement (Bubb et al., 2018; Schmahmann and
Pandya, 2009). Similar task-related specificity was seen for the associa-
tion between higher mean free water values across the CST, a
large-bundle cortical-motor pathway emanating from the brainstem, and
poorer Flanker performance, an inhibitory-reaction time task with a
strong psychomotor decision-making component. Even further, these
findings were hemisphere specific, such that tasks involving language
(List Sorting) were more significant for the left hemisphere portion of the
tract, while largely non-verbal measures (Picture Sequencing, Flanker)
were more significant for the right hemisphere portion of the associated
pathway. These findings extend the white matter and cognitive aging
literature, and provide unique evidence of a physiological process that
appears to play a role in cognitive aging.

While previous studies have shown free water and free water-
adjusted FA to be stronger correlates of aging than traditional FA
(Chad, J.A., Pasternak, O., Salat, D.H., Chen, 2018), mean free water was
www.manaraa.com

age p-val R2 βage p-val

0.143 0.343 Free Water-adjusted
Fractional Anisotropy

ATR 0.02 �0.046 0.765
0.043 0.783 CAB 0.02 0.050 0.748
0.050 0.746 CCG 0.03 �0.020 0.897
0.042 0.776 CST 0.09 0.047 0.749
0.127 0.401 Fmajor 0.07 �0.136 0.368
0.024 0.877 Fminor 0.04 0.114 0.463
0.145 0.351 ILF 0.01 �0.087 0.581
.052 0.728 SLF 0.17 0.262 0.069
0.007 0.966 UNC 0.05 0.139 0.367

ardized Beta Weight; ATR¼ Anterior Thalamic Radiation; CAB¼ Cingulate Gyrus
ct; Fmajor ¼ Forceps Major, Corpus Callosum; Fminor ¼ Forceps Minor, Corpus
ulus; UNC ¼ Uncinate Fasciculus.



Table 3
Association of free water with fluid cognition in older adults (N ¼ 47).

NIHTB Fluid Cognition Subtest Contributions to Fluid Index Hemispheric Contributions to Subtest Performance

R2 β p p (FDR) R2 β p p (FDR) R2 β p p (FDR)

CAB (bilateral) 0.35 �0.42 0.003* 0.027 CAB (bilateral) 0.35 0.003* 0.027
Hemispheric Model 0.37 0.002* 0.048 List Sorting �0.44 0.003* 0.015 List Sorting 0.30 0.003* 0.027
Left CAB �0.47 0.004* 0.048 Left CAB �0.44 0.006 0.069
Right CAB �0.22 0.194 0.235 Right CAB �0.23 0.153 0.224

CCG (bilateral) 0.29 �0.33 0.017* 0.045 CCG (bilateral) 0.29 0.017* 0.045
Hemispheric Model 0.31 0.009* 0.048 Picture Seq. �0.41 0.006* 0.030 Picture Seq. 0.24 0.006* 0.030
Left CCG �0.26 0.118 0.203 Left CCG �0.25 0.099 0.176
Right CCG �0.42 0.012* 0.048 Right CCG �0.46 0.002* 0.032

CST (bilateral) 0.28 �0.33 0.020* 0.045 CST (bilateral) 0.28 0.020* 0.045
Hemispheric Model 0.30 0.013* 0.048 Flanker �0.49 0.001** 0.005 Flanker 0.35 0.001** 0.005
Left CST �0.28 0.096 0.192 Left CST �0.40 0.012 0.064
Right CST �0.33 0.041 0.109 Right CST �0.45 0.003* 0.032

ILF (bilateral) 0.25 0.035 0.063 ILF (bilateral) 0.25 0.035 0.063
Hemispheric Model 0.33 0.006* 0.048 None – – – – None – – – –

Left ILF �0.20 0.206 0.235 – – – – – – – – – –

Right ILF �0.42 0.006* 0.048 – – – – – – – – – –

SLF (bilateral) 0.30 �0.35 0.016* 0.045 SLF (bilateral) 0.30 0.016* 0.045
Hemispheric Model 0.31 0.009* 0.048 List Sorting �0.38 0.012* 0.033 List Sorting 0.25 0.012* 0.033
Left SLF �0.40 0.011* 0.048 Left SLF �0.38 0.013 0.069
Right SLF �0.30 0.065 0.149 Right SLF �0.34 0.028 0.112

*survives FDR-correction at p < .05; **survives FDR-correction at p < .01.
Note: Mean free water is represented across the 99% probabilistic connectivity white matter tract data with regression covariates age, education, and gender. Only values
displayed for pathways significant prior to FDR correction. ATR ¼ Anterior Thalamic Radiation; CAB ¼ Cingulate Gyrus, angular bundle; CCG ¼ Cingulate Gyrus,
cingulum bundle; CST ¼ corticospinal tract; SLF ¼ superior longitudinal fasciculus.

Fig. 2. Partial correlogram displaying
the partial correlation between age-, ed-
ucation-, and gender-adjusted diffusion
metrics and age-, education-, and
gender-adjusted cognitive performance.
Note: FW ¼ Free Water, FA ¼ Fractional
Anisotropy, FW-adjusted FA ¼ Free
Water adjusted Fractional Anisotropy;
ATR ¼ Anterior Thalamic Radiation;
CAB ¼ Cingulate Gyrus, angular bundle;
CCG ¼ Cingulate Gyrus, cingulum
bundle; CST ¼ corticospinal tract; Fma-
jor ¼ Forceps Major, corpus callosum;
Fminor ¼ Forceps Minor, corpus cal-
losum; ILF ¼ inferior longitudinal
fasciculus; SLF ¼ superior longitudinal
fasciculus; UNC ¼ uncinate fasciculus.

J.M. Gullett et al. NeuroImage 219 (2020) 117040
only associated with age across the anterior thalamic radiation (ATR),
after multiple comparison correction. Further, no association existed
between age and mean FA nor mean free water-adjusted FA when uti-
lizing the core white matter pathway produced by TRACULA. Lack of
such associations are potentially due to the use of the relatively small
core pathway along the white matter tract which may not be sensitive
6

enough to demonstrate age-related white matter integrity effects in a
healthy aging cohort. This use of a healthy aging cohort may have further
implications for the lack of findings as well, as free water-corrected
indices have been shown to represent tissue degeneration and alter-
ations to the myelin sheath in previous studies (Pasternak et al., 2015).
As grey matter regions deteriorate, white matter typically declines
www.manaraa.com



Fig. 3. Three-dimensional representation of the larger tract from which the 99th percentile white matter pathway was extracted for diffusion metric analysis along
with the associated cognitive index and/or subtest for each pathway. Note: Only significant associations displayed. All values represent the measure of interest adjusted
for age, gender, and education. FW ¼ Free Water, FA ¼ Fractional Anisotropy, FW-adjusted FA ¼ Free Water adjusted Fractional Anisotropy; ATR ¼ Anterior Thalamic
Radiation; CAB ¼ Cingulate Gyrus, angular bundle; CCG ¼ Cingulate Gyrus, cingulum bundle; CST ¼ corticospinal tract; Fmajor ¼ Forceps Major, corpus callosum;
Fminor ¼ Forceps Minor, corpus callosum; ILF ¼ inferior longitudinal fasciculus; SLF ¼ superior longitudinal fasciculus; UNC ¼ uncinate fasciculus.

J.M. Gullett et al. NeuroImage 219 (2020) 117040
concurrently in those of advanced age (Brickman et al., 2005; Raz et al.,
2005; Salat et al., 1999), such as those participants utilized in the present
study (ages 65–85). Further, much like in the present study, these asso-
ciations appear in the cingulate and dorsolateral frontal regions of the
brain (Brickman et al., 2005). Degradation of the white matter pathway
is not likely to be uniform and may demonstrate an outside-in deterio-
ration pattern, though limited examination of this potential pattern has
been performed in the literature. This suggests that the use of micro-
structural white matter integrity across a larger, sample-based calcula-
tion of the white matter bundle as typically done in research (e.g. TBSS)
may be appropriate for the examination of disease- or aging-related
changes. However, it is possible that these approaches lack the sensi-
tivity to detect changes in microvasculature or potential inflammation in
normal aging given the confounded dMRI signal from CSF, grey matter,
and partial volume averaging typically present along the outer edge of
white matter pathways. For example, a recent study demonstrated a
strong association between higher free water and lower cognitive per-
formance in anMCI cohort but a decreasing utility of TBSS-examined free
7

water as disease progression increased (Ji et al., 2019). We demonstrate
that in the context of healthy aging, the use of a similar method utilizing
the probabilistically-derived 99th percentile core white matter pathway
retains both an age and cognitive function relationship that is specific to
the neuropsychological function of a given pathway.

It has been demonstrated that changes in white matter as measured by
FA in normal aging typically occurs along an anterior-posterior gradient,
where earlier changes are seen in the frontal versus posterior white matter
and correlating with declines in frontally- or attentionally-mediated
cognitive functions (Gunning-Dixon et al., 2009). The present study dem-
onstrates a higher value of free water with increased age along mostly
frontal and temporal regions, and these associations were also related to
lower performance on frontally-mediated cognitive tasks. These findings
demonstrate a strong coupling of free water and frontally-mediated
cognitive performance as compared to FA, suggesting that free water may
serve as amore sensitive early marker of age-related cognitive decline than
traditional dMRImeasures when extracted from a probabilistically-derived
pathway across the core white matter connection.
www.manaraa.com
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While direct data linking free water to physiological changes is
lacking, prior work has suggested free water may be a marker of early
axonal degeneration (Hoy et al., 2017a,b), or a potential marker of
neuroinflammatory processes (Albi et al., 2017; Maier-Hein et al., 2015;
Pasternak et al., 2015, 2014, 2012, 2009). If true, age-related increases in
free water fraction across major white matter pathways may represent a
chronic consequence of the aging process, and may even be a contrib-
uting factor to physiological decline underlying the cognitive aging
process. However, the fact that the relationship between free water and
cognitive function remained significant even after accounting for chro-
nological age, education, and gender suggests that extracellular free
water has broad-ranging implications for cognitive function; and may
possibly represent a more insidious process. More biomarker studies are
needed to determine the association of the free water metric and early
pathological neuroinflammatory and neurodegenerative processes.
Should future studies establish this link, the less-invasive nature of free
water data collection can be utilized, and effective interventions to target
such processes can be developed and tested in an attempt to slow the rate
of cognitive aging. The data presented in the current study represent an
additional link in the growing chain of literature investigating the subtle
changes in cognitive function across non-pathologically aging pop-
ulations. In this regard, additional research investigating cognitive
function relationships to differences in extracellular free water across AD,
MCI, and healthy aging will provide important insight into a potentially
useful biomarker for cognitive decline.

This study has a number of limitations worth consideration. The
sample size of forty-seven older adults is relatively small. We attempted
to address this limitation by considering only the findings of strongest
statistical significance with an appropriately-sized FDR correction at p <

.05 based on the number of pathways examined. It is possible that, given
the nine pathways were examined for their association with both fluid
and crystalized cognitive function, this level of correction is insufficient
to warrant significance. However, we feel the presented results are quite
relevant given the high level of specificity for the resulting significant
pathways and their associated neurocognitive functions. Regardless,
these factors highlight the need for larger, longitudinal studies of free
water change in typical aging, as well as throughout the trajectory of
neurodegenerative disease states. Further, the present study utilizes
single-shell dMRI data, which requires a regularized minimization to
estimate the model parameters. With more elaborated dMRI acquisitions,
the regularization assumptions can be relaxed, free water can be more
reliably estimated (Hoy et al., 2017a,b; Pasternak et al., 2014), and
confounding effects such as blood plasma (Rydh€og et al., 2017) or
relaxation times (Rydh€og et al., 2019) can be removed. Registration
inaccuracies may also cause the inclusion of mostly-CSF voxels which can
bias the free water measurement. However, the current study used the
99% probability core white matter pathway for each tract of interest to
minimize potential influence from CSF. While it is impossible to rule out
an influence of confounding CSF, the approach taken here serves to limit
potential influence.

5. Conclusions

The purpose of this investigation was to describe in a typically-aging
cohort the specific association between free water in white matter and
cognitive function. Our results demonstrate that examining white matter
microstructure in a manner that is relatively free of the confounds of CSF
and grey matter infringement may improve the specificity of cognitive
associations with a given a probabilistically-derived core white matter
tract in typically-aging older adults. Specifically, we show that higher
extracellular free water across the core of the cingulate gyrus, cortico-
spinal tract, and superior longitudinal fasciculus white matter pathways
are associated with poorer fluid cognitive function in normal older
adults. Higher mean free water fraction across these pathways appears to
8

be sensitive to lower hemisphere-specific cognitive functions of working
memory, inhibitory reaction time, and memory processes; even when
accounting for the effect of age, education, and gender. Thus, our data
demonstrate that the presence of free water within white matter is not
only greater with advanced age, but has functional consequences for
cognition. With further research and greater understanding of the
physiological process resulting in age-related increases of free water, this
measure may serve as a modifiable target for intervention.
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